
Feature learning for multi-task inverse

reinforcement learning

Olivier Mangin and Pierre-Yves Ouedeyer

December 22, 2014

Abstract

In this paper we study the question of life long learning of behaviors
from human demonstrations by an intelligent system. One approach is to
model the observed demonstrations by a stationary policy. Inverse rein-
forcement learning, on the other hand, searches a reward function that
makes the observed policy closed to optimal in the corresponding Markov
decision process. This approach provides a model of the task solved by the
demonstrator and has been shown to lead to better generalization in un-
known contexts. However both approaches focus on learning a single task
from the expert demonstration. In this paper we propose a feature learn-
ing approach for inverse reinforcement learning in which several different
tasks are demonstrated, but in which each task is modeled as a mixture of
several, simpler, primitive tasks. We present an algorithm based on an al-
ternate gradient descent to learn simultaneously a dictionary of primitive
tasks (in the form of reward functions) and their combination into an ap-
proximation of the task underlying observed behavior. We illustrate how
this approach enables efficient re-use of knowledge from previous demon-
strations. Namely knowledge on tasks that were previously observed by
the learner is used to improve the learning of a new composite behavior,
thus achieving transfer of knowledge between tasks.

1 Introduction

Understanding and imitating human behaviors is a key capability for robots to
collaborate with humans or even to be accepted in their living environments.
However human behaviors feature a huge variety both in their nature and their
complexity. Many approaches to the problems of human behavior understand-
ing and learning from demonstration focus on directly mimicking the observed
behavior. In that context, the human behavior is often represented as a map-
ping from time to actions or a stationary policy, that is to say a mapping from
states of the agent and its environment to a probability distribution over possi-
ble actions. However the policy space is generally very large and representing a
behavior as a sequence of actions, without regularization, might not be robust
to changes in the context. For example, for the task of grasping an object, if

1

the hand starting position or the object position changes, the motion to grasp
it will look very different. For a well chosen representation of the state, learn-
ing a policy may address this issue. However for rich state representations, the
demonstrator policy is often only observed in a small subset of the state space
which might lead to poor generalisation. Previous work in inverse reinforcement
learning (IRL) [Ng and Russell, 2000, Abbeel and Ng, 2004, Neu and Szepesvári,
2007] has shown that it can provide better generalization of the learnt behaviors
to new unobserved contexts, to learn a model of the task solved by the demon-
strator. More precisely, the learner assumes that the demonstrator’s intention
is to solve a task, it then tries to solve the same task instead of directly mim-
icking the demonstrator’s actions. Furthermore inverse reinforcement learning
or similarly inverse optimal control [Ratliff et al., 2006] also has the advantage
of providing a model of the demonstrator’s intention, which we often denote as
task in this paper.

However inverse reinforcement techniques have mainly been studied in the
single task setup, where appropriate features are provided, whereas an important
challenge for life long learning systems is to be able to efficiently re-use previous
knowledge to understand new situations, which is an aspect of transfer learning
as stated by Silver et al. [2013]. For example a child learning to play a new ball
game won’t learn again how to grasp a ball, how to throw it and how to run.
While observing a demonstration of the new game the child would not focus on
every position of each body joint along the demonstration but rather recognize
a set of basic behaviors, e.g. running to a point while keeping the ball in hands
and then throwing the ball to an other position. Therefore, an approach that
represents the new activity in terms of known primitive tasks, eventually learn-
ing some new missing parts, rather than learning everything from scratch would
provide a better model of the graceful increase in the complexity of achievable
tasks that is observed on children.

The idea of learning a dictionary whose elements can be combined to ap-
proximate observations, denoted as dictionary learning, has been largely studied
in the machine learning community where it lead to good results [Aharon et al.,
2005, Lee and Seung, 1999]. Typically, inverse reinforcement learning is de-
scribed as learning a single task from an expert, which, for non-trivial models
of states and actions, requires a huge number of demonstrations. In order to
make the number of required demonstrations feasible, one often uses adequate
features to reduce the search space. However specifying good features requires
prior knowledge about the task and learning the features for one task requires
a lot of demonstrations of one single task. Being able to learn a dictionary
of features from several related but different tasks can reduce the amount of
demonstrations required for each task which would open new applications for
inverse reinforcement learning such as recognizing simple actions, as grasping or
throwing the ball in the ball game example by observing people playing, with-
out requiring an expert to provide many demonstration of the “throwing a ball”
primitive action.

In this paper we therefore focus on the question of how to represent demon-
strated behaviors as the combination of simpler primitive behaviors that can be

2

re-used in other contexts. We present an algorithm that, by observing demon-
strations of an expert solving multiple tasks, learns a dictionary of primitive
behaviors and combine them to account for the observations. We demonstrate
how such an approach can be beneficial for life long learning capabilities in a
simple toy experiment.

2 Related work

Inverse reinforcement learning algorithms takes as input demonstrations from
an expert, more precisely trajectories in a Markov decision process (MDP). It is
generally assumed that a model of the transition is known and that the expert
is acting optimally or close to optimally with respect to an unknown reward
function. The goal of inverse reinforcement learning is then to find a reward
for which the expert behavior is optimal. It is however well known that this
problem is ill-posed: nonnegative scaling of reward and addition of a potential
function does not change the optimality of policies [Ng et al., 1999] and for non
trivial problems a lot more solutions may exist.

Since the seminal work from Ng and Russell [2000] introduced the problem
of inverse reinforcement learning, many algorithms have been proposed to solve
it [Abbeel and Ng, 2004, Ratliff et al., 2006, Ramachandran and Amir, 2007,
Ziebart et al., 2008, Neu and Szepesvári, 2007].

More recent work also address other aspects of inverse reinforcement learning
that makes it more relevant to life long learning. Levine et al. [2010] introduce
an algorithm to both learn an estimate of the reward optimized by the expert
and features to efficiently represent it. They also demonstrate how the learned
features can be transfered to a new environment. Jetchev and Toussaint [2011]
present an inverse feedback learning approach to a grasping problem. They
demonstrated how enforcing sparsity of the feedback function (conceptually
equivalent to a reward function) can also solve a task space retrieval problem.

While in the works presented above the expert only demonstrates a single
task, Babes-Vroman et al. [2011] present an EM-based algorithm which, from
unlabeled demonstrations of several tasks, infer a clustering of these demon-
strations together with a set of models. Almingol et al. [2013] also recently
developed similar ideas.

The algorithm presented in this paper extends the gradient approach by
Neu and Szepesvári [2007] to learn a dictionary of primitive reward functions
that can be combined together to model the intention of the expert in each
demonstration. Our work is different from the one proposed by Babes-Vroman
et al. [2011] since it not only learns from demonstrations of several tasks but also
enable transfer of the knowledge from one task to an other. It thus includes ideas
from Levine et al. [2010] but extended to unlabeled multi-task demonstrations.

3

3 Algorithm

We assume that we observe demonstrations ξ from an expert, that are sequences
(xt, at) of states xt ∈ X and action at ∈ A, such that ξ = (xt, at)t∈[|1,T |].

A Markov decision process (MDP) is defined as a quintuple (X ,A, γ, P, r)
where γ is the discount factor. P , the transition probability, is a mapping from
state actions pairs to probability distributions over next states. We denote by
P (x′|x, a) the probability to transition to state x′ from state x, knowing that
action a was taken. Finally, r : X ×A → R is the reward function.

A stationary policy π is a mapping from states to probability densities over
actions. For a given MDP and a policy one can define the value function V π,
the action value function Qπ:

V π(x) = E

 ∞
t=0

γtr(Xt, At)

X0 = x


(1)

Qπ(x, a) = E

 ∞
t=0

γtr(Xt, At)

X0 = x,A0 = a


(2)

and the associated optimal value function V ∗(x) = supπ V
π(x), ∀x ∈ X and op-

timal action value function Q∗(x, a) = supπ Q
π(x, a), ∀(x, a) ∈ X×A . A policy

that is optimal (w.r.t. to equation (1)) over all state is said to be optimal. Greedy
policies over Q∗, that is to say policies such that π(argmaxa Q

∗(x, a)|x) = 1 ,
are known to be optimal. Finally Q∗ is solution of the fixed point equation given
in equation (3) that provides an algorithm known as dynamic programming to
compute Q∗ for a known MDP.

Q∗(x, a) = r(x, a) + γ

y∈X

P (y|x, a)max
b∈A

Q∗(x, b) (3)

In the following we assume that the model of the world (i.e. states, actions
and transitions) is fixed and that the discount factor γ is known. However we
represent the intention of a demonstrator (called expert) as acting optimally
with respect to a task that is modelled as a reward function. Since the model
of the world is fixed no distinction is made between a reward function r and the
associated MDP, MDP (r).

3.1 Gradient for apprenticeship learning

In this section we present the algorithm and results introduced by Neu and
Szepesvári [2007]. For more details and proofs the reader is invited to look at
the article.

Inverse reinforcement learning for apprenticeship learning is based in the
assumption that the expert’s intention is to solve a task, modeled by a re-
ward function. Mimicking the expert behavior therefore consists in using a
policy that is optimal for the same reward. The hybrid approach from Neu and

4

Szepesvári [2007] focuses on learning a reward such that an associated optimal
policy matches the expert’s actions.

In this single task setup, the expert provides one or several demonstrations
of solving the same task. The expert actions are modeled by a stationary policy
πE . The objective of apprenticeship learning becomes to find a policy π that
minimize the cost function from equation (4), in which µ denotes the average

state occupation, that is to say µE(x) = lim
T→∞

Eπ
1
T

T
t=1

δXt=x .

J(π) =


x∈X ,a∈A
µE(x)


π(x|a)− πE(x|a)

2
(4)

For an expert demonstration represented by ξ = (xt, at)t∈[|1,T |] one estimates
J by equation (5), in which µ̂E,ξ and π̂E,ξ are empirical estimates of µE and πE

from ξ.

Jξ(π) =


x∈X ,a∈A
µ̂E,ξ(x)


π(x|a)− π̂E,ξ(x|a)

2
(5)

In the following the reward rθ is parametrized by θ ∈ Θ where Θ ∈ Rd

and we denote by Q∗
θ the optimal action value function of the MDP associated

to rθ. In practice linear features are used for r. Let G be a smooth mapping
from action value functions to policies that returns a close to greedy policy to
its argument. Instead of minimizing Jξ over any subset of policies, Neu and
Szepesvári [2007] suggests to constrain π to be of the form πθ = G(Q∗

θ).
Solving the apprenticeship learning problem is then equivalent to finding θ

that reaches:
min
θ∈Θ

Jξ(πθ) s.t. πθ = G(Q∗
θ). (6)

In practice, Neu and Szepesvári [2007] uses Boltzmann policies as choice for
the G function, as given by equation (7) where the parameter β is a nonnegative
real number. This choice ensures that G is infinitely differentiable. Assuming
that Q∗

θ is differentiable w.r.t. θ its first derivate is given by equation (8).

G(Q)(a|x) =
exp

βQ(x, a)


a′∈A

exp

βQ(x, a′)

 (7)

∂G(Q∗
θ)(a|x)

∂θk
= G(Q∗

θ)(a|x)


∂Q∗

θ(x, a)

∂θk
−

a′∈A

πθ(a
′|x)∂Q

∗
θ(x, a

′)

∂θk


(8)

The following proposition from Neu and Szepesvári [2007] provides both

guarantees that
∂Q∗

θ(x, a)

∂θk
is meaningful and a practical way to compute it.

Proposition (Neu and Szepesvari). Assuming that rθ is differentiable w.r.t. θ
and sup(θ,x,a)∈Θ×X×A < ∞ , the following statements hold:

5

1. Q∗
θ is uniformly Lipschitz-continuous as a function of θ in the sense that

there exist L′ > 0 such that for any (θ, θ′) ∈ Θ2, |Q∗
θ(x, a) − Q∗

θ(x, a)| ≤
L′∥θ − θ′∥

2. The gradient ∇θQ
∗
θ is defined almost everywhere1 and is a solution of the

following fixed point equation, in which π is a greedy policy on Q∗
θ:

φθ(x, a) = ∇θr(x, a) + γ

y∈X

P (y|x, a)

b∈A

π(b|y)φθ(y, b) (9)

The previous result thus provides an algorithm, similar to dynamic pro-
gramming that yields the derivative of Q∗

θ with respect to θ. It it then easy
to combine it with the differentiates of Jξ with respect to π and G to obtain a
gradient descent algorithm that finds a local minima of the objective.

Neu and Szepesvari furthermore provides a variant of this algorithm follow-
ing a natural gradient approach.

3.2 Feature learning for multi-task inverse reinforcement
learning (FactIRL)

In this section we extend the algorithm from Neu and Szepesvári [2007] to a
dictionary learning problem. We now assume that the expert provides several
demonstration of different but related tasks. The demonstrations are denoted ξi
with index i ∈ [|1, n|]. Each demonstration is modeled by a separate parameter
θ(i) that represents the tasks solved by the expert. We focus on a generative
model of mixtures of behaviors or tasks such that the combination of tasks can
be represented as a reward function that is a linear combination of the reward
functions of the mixed tasks.

More precisely, a matrix D ∈ Rd×k represents the dictionary and a matrix
H ∈ Rk×n the mixing coefficients. The columns of H are denoted h(i) such that
the parameters of the ith task are θ(i) = Dh(i).

In the following we present an algorithm that learns the matrix factorization
that is to say the dictionary matrix D and associated coefficients H such that
θ(i)s are represented as combinations of k elements from a dictionary. The
algorithms minimizes the cumulated cost over all demonstrations denoted by
JΞ, where Ξ = (ξi)i∈[|1,n|], and defined in equation (10).

JΞ(D,H) =

n
i=1

Jξi(Dh(i)) (10)

In order to solve the problem argminD,H JΞ(D,H) the algorithm alternates
steps that minimize the cost with respect to D, H being fixed, and with respect
to H, D being fixed. The second steps actually decomposes in n separate
problems similar to the one from previous section. Both steps uses a gradient
descent approach where the gradients are given by eqs. (11) and (12).

1i.e. except on a set of measure zero

6

∇DJΞ(D,H) =

∇θJξi


Dh(1)

 ... ∇θJξi

Dh(n)


·HT (11)

∇HJΞ(D,H) = DT ·

∇θJξi


Dh(1)

 ... ∇θJξi

Dh(n)


(12)

In practice the learner performs a fixed amount of gradient descent on each
sub-problem (optimization of H and D), with Armijo step size adaptation be-
fore switching to the other sub-problem. The algorithm stops when reaching
convergence. It appears that this gradient descent algorithm is quite sensitive
to initial conditions. A good empirical initialization of the dictionary is to first
learn θ(i)s with the flat approach, perform a PCA on the learnt parameters and
use it as an initial guess for the dictionary.2

4 Experiments

In these experiments a task refers to a MDP associated to a reward function. We
consider composite tasks which means tasks that correspond to reward functions
obtained by mixing several primitive reward functions.

The algorithm described above is experimented on a simple toy example
similar to the one from Neu and Szepesvári [2007]: a grid world (typically
of size 10 by 10) is considered in which actions corresponds to moves in four
directions. Actions have the expected result, that is a displacement of one step
in the expected direction, in 70% of the cases and results in a random move in
the other cases; except when the requested move is not possible from current
state (for example going up on top border) in which case the resulting move is
drawn uniformly from feasible moves. The following uses a fixed discount factor
γ = 0.9.

4.1 Validation

In a first experiment we compare our factorial algorithm to direct learning of the
parameter representing a task with Neu and Szepesvari’s gradient (GradIRL),
that we call flat learner to differentiate from the factorial approach.

More precisely a random dictionary of features is chosen, that is unknown
from the apprentices, together with mixing coefficients that determine n distinct
composite tasks. n experts are then used to generate demonstrations for each
tasks (during training the expert may provide several demonstrations of each
task).

The demonstrations obtained are fed to both flat and factorial apprentices.
While the flat learners independently learn a model of each task, the factorial
learner reconstructs a dictionary, shared amongst tasks together with mixing
coefficients.

2Experiments presented further shows that the PCA strategy alone does not provide a
good dictionary for our problem, but is an efficient initialization.

7

We evaluate the apprentices on each learnt task by measuring their average
performance on the MDP corresponding to the demonstrated task, referred
as MDP (rreal). More precisely the apprentice can provide an optimal policy
π∗
rlearnt

with respect to its model of the task, that is to say a policy optimal with
respect to the learnt reward rlearnt .

3 This policy is then evaluated on the MDP
corresponding to the real task (MDP (rreal)). To evaluate the average reward
that the apprentice would get on the MDP with random starting positions (not
necessarily matching those of the expert) we compute the average value function:

scorerreal (rlearnt) =
1

|S|

s∈S

V
π∗
rlearnt

rreal (s) (13)

In the results presented here, the demonstrated tasks were generated from
a dictionary of 5 primitive reward functions. No feature is used to parametrize
rewards: they are represented as deterministic functions from state-action pairs
to a real number, which corresponds to a 400 parameters. The expert provides
10 demonstrations for each task, each lasting 10 time steps and 100 tasks are
demonstrated.

Results presented in fig. 1 show that the factorial apprentice is capable of
using information about the common structure of the various tasks to achieve
better performance on each task. The performance of the learner therefore in-
creases with the number of demonstrated tasks. When only few demonstrations
are given for each task, the demonstrator’s behavior is only observed on a subset
of the possible state-action pairs. In such cases, the flat learner often fails to
achieve good generalization over all the state space. On the other hand, the
factorial learner can benefit from other tasks to complete this information.

We also compare the results with flat learners trained with specific features:
the ground truth dictionary (flat, ground truth) and a dictionary learnt by per-
forming PCA on the parameters learnt by the flat learners (flat, PCA features).

4.2 Re-use of the dictionary

In order to demonstrate the ability of the factorial algorithm to transfer knowl-
edge to new tasks we performed a second experiment. Apprentices are trained
similarly to the previous experiment. In the following we call train tasks these
tasks. For testing, a new task is generated randomly from the same dictionary
of rewards (denoted as test task) and apprentices observe a single demonstration
of the new task. To get meaningful results, this step is reproduced on a number
of independent test tasks (typically 100 in the experiment).

Since the task is different from the previous demonstrations, it is not really
meaningful for the flat learners to re-use the previous samples or the previously
learnt parameters, so the task must be learnt from scratch. On the other hand,
the factorial learner re-uses its dictionary as features to learn mixing coefficients
for the new task. We also experimented two alternative, simpler, strategies to

3This policy is obtained as a greedy policy on the optimal action value function (with
respect to the model of the task, rlearnt), computed by value iteration.

8

Figure 1: Performance on train tasks The factorial learner overcomes the
flat learner by leveraging the features common to all tasks for high number of
demonstrated tasks and moderate number of demonstrations for each task. The
curves represent the average deviation (lower is better) from the best possible
score (the one obtained with perfect knowledge of the task), that is the average of
the optimal value function, for different values of the number of demonstrations
per training task (top) for a fixed number of training tasks of 100 and for the
number of training tasks (bottom), the number of demonstrations for each tasks
being fixed to 10. The algorithm presented in this section is denoted as Fact.
learner ; two alternative initialization heuristics are presented. (Best seen in
colors)

9

build a dictionary in order to re-use information from the training tasks. The
first one consists in using a random selection of rewards learnt during training as
features for the new tasks (flat, features from ex.). We use the learnt parameters
of 15 training tasks as features. The other one performs a PCA on the rewards
learnt during training and uses the five first components as features (flat, PCA
features).

Similarly to previous experiment the apprentices are evaluated on their score
(according to ground truth reward function) on solving the new task.

Results, presented in fig. 2 are compared for various number of training tasks
and demonstration per task. They demonstrate that the factorial learner can
re-use its knowledge about the combinatorial structure of the task to learn the
new task more quickly. The factorial learner also outperforms the other simple
feature construction strategies.

The better ability of the factorial apprentice to generalize over the state
space is increased in this setting since only a single demonstration is observed
from the expert. Often this demonstration only covers a small part of the state-
action space. This phenomenon is illustrated in fig. 3 that represents the true
optimal value function together with the expert’s demonstrations, and the learnt
value functions by both the flat learner and the factorial one. A typical situation
that can be observed in some examples, is that the flat learner’s value function
is local to expert’s demonstration, while the factorial learner, that estimates
the task in the space of learnt features, can have a good estimate of the value
function in parts of the space where no demonstration was provided.

5 Discussion

In this paper we presented a gradient descent algorithm to learn a dictionary
of features to represent multiple tasks observed through an expert’s demon-
strations with an inverse reinforcement learning approach. The experiments
demonstrate that the approach enables the learning of the common structure
of the tasks by using transversal information from all the demonstrated tasks.
Furthermore it demonstrates and illustrates the fact that this approach enables
more accurate representation of new tasks from only one short demonstration,
where the classical inverse reinforcement learning approach fails to generalize to
unobserved parts of the space due to the lack of adequate features.

The algorithm is compared with naive approaches trying to learn a dictio-
nary from task parameters that were inferred through flat inverse reinforcement
learning and showed that these approaches fail to learn the relevant structure
of the demonstrated tasks. A possible interpretation of this difference is that
the PCA approach performs the matrix factorization with respect to the metric
of the parameter space, whereas our algorithm uses the more relevant objec-
tive cost function. Due to the particular structure of the inverse reinforcement
learning problem, namely invariance of the problem with respect to reward scal-
ing, and other transformations [Ng et al., 1999, Neu and Szepesvári, 2007], the
metric of the parameter space is not relevant for the objective of apprenticeship

10

Figure 2: Performance on test tasks For new task observed through a sin-
gle demonstration, the factorial learner outperforms the flat learner by re-using
previous knowledge on task features. The curves represent the average devi-
ation (lower is better) from the best possible score, for different values of the
number of demonstrations per training task (top) for a fixed number of train-
ing tasks of 100, and for the number of training tasks (bottom), the number of
demonstrations for each tasks being fixed to 10. (Best seen in colors)

11

0 2 4 6 8 100

2

4

6

8

10
V∗
expert (example 0)

0 2 4 6 8 100

2

4

6

8

10
V∗
f lat learner (example 0)

0 2 4 6 8 100

2

4

6

8

10
V
∗
f actorial learner (example 0)

0 2 4 6 8 100

2

4

6

8

10
V∗
expert (example 1)

0 2 4 6 8 100

2

4

6

8

10
V∗
f lat learner (example 1)

0 2 4 6 8 100

2

4

6

8

10
V
∗
f actorial learner (example 1)

0 2 4 6 8 100

2

4

6

8

10
V∗
expert (example 2)

0 2 4 6 8 100

2

4

6

8

10
V∗
f lat learner (example 2)

0 2 4 6 8 100

2

4

6

8

10
V
∗
f actorial learner (example 2)

0 2 4 6 8 100

2

4

6

8

10
V∗
expert (example 3)

0 2 4 6 8 100

2

4

6

8

10
V∗
f lat learner (example 3)

0 2 4 6 8 100

2

4

6

8

10
V
∗
f actorial learner (example 3)

Figure 3: The factorial learner achieves a better recognition of new tasks from
a single demonstration by using the learnt features. In contrast the flat learner
often build a task representation that is local to the demonstration. First row
represents the optimal value function (blue is high) for the real task, together
with the single demonstration provided by the expert. Second and third row
represents the optimal value function for the model of the task as learnt by
respectively the flat learner and the factorial learner. Each column corresponds
to one of the four first test tasks (from a total of 100). (Best seen in colors)

12

learning.
An important limitation of inverse reinforcement learning is that it assumes

the knowledge of a model of the dynamics of the environment. Therefore it can
either be applied to situations where that model is actually known, meaning it
is very simple, or where it can be learnt. However the latter brings the new
question of the robustness of inverse reinforcement algorithms to errors or gaps
in the learnt model. Furthermore, while regular inverse reinforcement learning
outputs both a model of the task and a policy that solves it, the factorial ap-
proach presented in this section only provides policies for the observed tasks.
This means that although a large variety of tasks may be represented by com-
bining primitive tasks from the learnt dictionary, it is generally not meaningful
to combine the policies in the same way: the agent has to train a policy for
these new tasks.

This algorithm can be considered as a first example of feature learning in
the multi-task setup for inverse reinforcement learning. However other ap-
proaches should be explored by further work in order to derive more efficient
algorithms, by for example extending the natural gradient approach from Neu
and Szepesvári [2007] to the dictionary learning setup, or adopting a Bayesian
approach extending Ramachandran and Amir [2007].

Finally constraints can be applied to the learnt dictionary to favor some
kinds of solutions. Two examples of such constraints for which many machine
learning algorithms have been developed are non-negativity and sparsity. Non-
negativity of the coefficients would for example focus on representations that
allow primitive behaviors to be added to, but not subtracted from an activity in
which they do not appear. Such constraints have been successful in many fields
to yield decompositions with good properties, in terms of interpretability but
also sparsity [Paatero and Tapper, 1994, Lee and Seung, 1999, ten Bosch et al.,
2008, Lefèvre et al., 2011, Hellbach et al., 2009, Mangin and Oudeyer, 2013, see
for example]. Sparse coding also focuses on a constraint on decompositions to
improve the properties of the learnt elements [Hoyer, 2002, Aharon et al., 2005,
Lee et al., 2006]. For example. Jetchev and Toussaint [2011] have shown how
enforcing sparsity of a task representation can make this task focus only on a
few salient features, thus performing task space inference. Other examples are
given by Li et al. [2010] and Hellbach et al. [2009]. Exploring the use of these
constraints together with the techniques presented in this paper constitutes
important direction for further work.

References

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In International conference on Machine learning, 2004.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: Design of dictio-
naries for sparse representation. In Proceedings of SPARS, number 5, pages
9–12, 2005.

13

Javier Almingol, Luis Montesano, and Manuel Lopes. Learning multiple behav-
iors from unlabeled demonstrations in a latent controller space. In Interna-
tional conference on Machine learning (ICML), 2013.

Monica Babes-Vroman, Vukosi Marivate, Kaushik Subramanian, and Michael
Littman. Apprenticeship learning about multiple intentions. In International
conference on Machine learning (ICML), number 28, 2011.

Sven Hellbach, Julian P Eggert, Edgar Körner, and Horst-michael Gross. Basis
decomposition of motion trajectories using spatio-temporal nmf. In Int. Conf.
on Artificial Neural Networks (ICANN), pages 597–606, Limassol, Cyprus,
2009. Springer.

Patrik O Hoyer. Non-negative sparse coding. Technical report, February 2002.

Nikolay Jetchev and Marc Toussaint. Task space retrieval using inverse feedback
control. In Lise Getoor and Tobias Scheffer, editors, International Conference
on Machine Learning, number 28 in ICML ’11, pages 449–456, New York, NY,
USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

Daniel D. Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–91, October 1999. ISSN
0028-0836. doi: 10.1038/44565.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse
coding algorithms. In Advances in Neural Information Processing Systems
(NIPS), number 19, 2006.

Augustin Lefèvre, Francis R. Bach, and Cédric Févotte. Itakura-saito nonnega-
tive matrix factorization with group sparsity. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, number 1,
pages 21–24. IEEE, 2011.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Feature construction for
inverse reinforcement learning. Advances in Neural Information Processing
Systems, (24):1–9, 2010.

Yi Li, Cornelia Fermuller, Yiannis Aloimonos, and Hui Ji. Learning shift-
invariant sparse representation of actions. In 2010 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, pages 2630–
2637, San-Francisco, June 2010. IEEE. ISBN 978-1-4244-6984-0. doi:
10.1109/CVPR.2010.5539977.

Olivier Mangin and Pierre-Yves Oudeyer. Learning semantic components from
subsymbolic multimodal perception. In the Joint IEEE International Con-
ference on Development and Learning and on Epigenetic Robotics (ICDL-
EpiRob), number 3, August 2013.

14

Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse rein-
forcement learning and gradient methods. In Conference on Uncertainty in
Artificial Intelligence (UAI), number 23, pages 295–302, Vancouver, Canada,
2007. AUAI Press, Corvallis, Oregon. ISBN 0-9749039-3-00-9749039-3-0.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning.
International Conference on Machine Learning, 2000.

Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under re-
ward transformations: Theory and application to reward shaping. In Interna-
tional Conference on Machine Learning (ICML), number 16, pages 278–287,
1999.

P Paatero and U Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environ-
metrics, 5(2):111–126, 1994.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learn-
ing. In International Joint Conference on Artificial Intelligence (IJCAI’07),
number 20, pages 2586–2591, 2007.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum
margin planning. In International conference on Machine learning - ICML
’06, number 23, pages 729–736, New York, New York, USA, 2006. ACM Press.
ISBN 1595933832. doi: 10.1145/1143844.1143936.

Daniel L. Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning sys-
tems : Beyond learning algorithms. In AAAI Spring Symposium Series, pages
49–55, 2013.

Louis F.M. ten Bosch, Hugo Van Hamme, and Lou W.J. Boves. Unsupervised
detection of words questioning the relevance of segmentation. In Speech Anal-
ysis and Processing for Knowledge Discovery, ITRW ISCA. Bonn, Germany
: ISCA, 2008.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maxi-
mum entropy inverse reinforcement learning. In AAI Conference on Artificial
Intelligence, number 23, pages 1433–1438, 2008.

15

	Introduction
	Related work
	Algorithm
	Gradient for apprenticeship learning
	Feature learning for multi-task inverse reinforcement learning (FactIRL)

	Experiments
	Validation
	Re-use of the dictionary

	Discussion

